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Mining, Analyzing, and Evolving
Data-intensive Software Ecosystems
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Abstract Managing data-intensive software ecosystems has long been considered an
expensive and error-prone process. This is mainly due to the often implicit consis-
tency relationships between applications and their database(s). In addition, as new
technologies emerged for specialized purposes (e.g., key-value stores, document
stores, graph databases), the common use of multiple database models within the
same software (eco)system has also become more popular. There are undeniable
benefits of such multi-database models where developers use and combine technolo-
gies. However, the side effects on database design, querying, and maintenance are
not well-known.
This chapter elaborates on the recent research effort devoted to mining, analyzing,
and evolving data-intensive software ecosystems. It focuses on methods, techniques,
and tools providing developers with automated support. It covers different processes,
including automatic database query extraction, bad smell detection, self-admitted
technical debt analysis, and evolution history visualization.
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11.1 Introduction

Data-intensive software ecosystems comprise one or several databases and a collec-
tion of applications connected with the former. They constitute critical assets in most
enterprises since they support business activities in all production and management
domains. They are typically old, large, heterogeneous and highly complex.

Database interactions play a crucial role in data-intensive applications, as they
determine how the system communicates with its database(s). When the application
sends a query to its database, it is the database’s responsibility to handle it with
the best performance. The developer has limited control: If the query is not well-
formed or not handled correctly in the program code, it generates an extra load on
the database side that affects the application’s performance [53] [82]. In the worst
case, it can lead to errors, bugs, or security vulnerabilities such as code injection.

In the last decade, the emergence of novel database technologies, and the in-
creasing use of dynamic data manipulation frameworks have made data-intensive
ecosystem analysis and evolution even more challenging.

In particular, the increasing use of NoSQL databases poses new challenges for
developers and researchers. A prominent feature of such databases is that they are
schema-less, offering greater flexibility in handling data. This freedom strikes back
when it comes to maintaining and evolving data-intensive applications [72, 93].
Another challenging trend is the development of hybrid multi-database architec-
tures [17], called hybrid polystores, where relational and NoSQL databases co-exist
within the same system and must be queried and evolved jointly and consistently.

We present recent research initiatives aiming to address those challenges. In Sec-
tion 11.2 we discuss mining techniques to determine how data is stored and managed
in a data-intensive ecosystem. Those techniques can automatically identify and ex-
tract the database interactions from the system source code. Section 11.3 elaborates
on static analysis and visualization techniques that exploit the mined information
about storing and manipulating the ecosystem’s data. In Section 11.4 we summarize
the findings of empirical studies related to data-intensive software ecosystems. We
provide concluding remarks and anticipate future directions in Section 11.5.

11.2 Mining Techniques

11.2.1 Introduction

Managing a data-intensive software ecosystem requires a deep understanding of its
architecture since it consists of many subsystems which depend on one another. They
use each other’s public services and APIs—they communicate. A subsystem may
rely on one or more databases, and their data will likely travel through the entire
ecosystem. Maintaining and evolving this interconnected system network requires a
fundamental understanding of how data is handled all over it.
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In this section, we present approaches to mining how data is stored and managed in
a data-intensive ecosystem. Such knowledge can serve various purposes, e.g., reverse
engineering, re-documentation, visualization, or quality assurance approaches.

We present two techniques to study the interaction points in the applications where
they communicate with databases. Both techniques are based on static analysis and
hence, do not require the application to execute but only its source code. This can
be particularly important for an ecosystem where dynamic analysis is even more
challenging, if not impossible, in most situations.

In Subsection 11.2.2, we present a static approach to identifying, extracting, and
analyzing database accesses in Java applications. This technique can be used for
applications with libraries that communicate through SQL statements (e.g., JDBC
or Hibernate). It locates the database interaction points and traces back the potential
SQL strings dynamically constructed at those locations. In Subsection 11.2.3, we
show a similar static approach for NoSQL databases. This technique was developed
to analyze MongoDB usage in Java and JavaScript. JavaScript is a highly dynamic
language, and the approach tries to alleviate the limitations of static analysis by using
heuristics, e.g., when types are not available explicitly.

11.2.2 Static Analysis of Relational Database Accesses

Database manipulation is central in the source code of a data-intensive system. It
serves data to all its other parts and enables the application to query the informa-
tion needed for all operations and persist changes to its actual state. The database
manipulation code is often separated in the codebase. For example, object-oriented
languages usually follow the DAO (Data Access Object) design pattern to isolate the
application/business layer from the persistence layer. A DAO class implements all
the functionality required for fetching, updating, and removing its domain objects.
For example, a UserDao would be responsible for handling User objects mapped to
user entities in the database.

The complexity of the manipulation code depends on the APIs or libraries used
for database communication, and many libraries are available depending on the
developers’ needs. Several factors may determine the library’s choice, such as the
programming language, database, and required abstraction level. A large-scale em-
pirical study by Goeminne et al. [43] found JPA, Hibernate, and JDBC among the
most popular ones in 3,707 GitHub Java projects. Moreover, many systems use com-
binations of multiple libraries. From the mining point of view (and also from the
developer’s perspective), these libraries can partly or entirely hide the actual SQL
queries executed by the programs, generating queries at run-time before sending
them to the database server.

Listing 11.1 shows an example code snippet executing a SQL query through the
JDBC API. Statement.execute(...) sends the query to the database (line 10).
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It is part of the standard java.sql API that provides classes for “accessing and
processing data stored in a data source (usually a relational database).”1 The final
query results from string operations (e.g., lines 9, 14) depending on conditions (e.g.,
lines 8, 19).

Listing 11.1: Java code example executing a SQL query
1 public class ProviderMgr {
2 private Statement st;
3 private ResultSet rs;
4 private boolean ordering;
5

6 public void executeQuery(String x, String y){
7 String sql = getQueryStr(x);
8 if (ordering)
9 sql += "order by " + y;
10 rs = st.execute(sql);
11 }
12

13 public String getQueryStr(String str){
14 return "select * from " + str;
15 }
16

17 public Provider[] getAllProviders(){
18 String tableName = "Provider";
19 String columnName = (...) ? "provider-id" : "provider_name";
20 executeQuery(tableName, columnName) ;
21 // ...
22 }
23 }

Listing 11.2 presents a similar example usage of Hibernate to send an HQL query
to the database. HQL (Hibernate Query Language) is the SQL-like query language
of Hibernate. It is fully object-oriented and understands inheritance, polymorphism,
and association. The example shows a snippet using the SessionFactoryAPI. The
HQL statement on line 10 queries products belonging to a given category. Hibernate
transforms this query to SQL and sends it to the database when the list() method
is invoked on line 12.

Listing 11.2: Java code snippet executing an HQL query
1 public class ProductDaoImpl implements ProductDao {
2 private SessionFactory sessionFactory;
3

4 public void setSessionFactory(SessionFactory sessionFactory) {
5 this.sessionFactory = sessionFactory;
6 }
7

8 public Collection loadProductsByCategory(String category) {
9 return this.sessionFactory.getCurrentSession()

1 https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
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10 .createQuery("from Product product where category=?")
11 .setParameter(0, category)
12 .list();
13 }
14 }

Meurice et al. addressed the problem of recovering traceability links between
Java programs and their databases [70]. They proposed a static analysis approach to
identify the source code locations where database queries are executed, extracting
the SQL queries for each location. The approach is based on algorithms that operate
on the application’s call graph and the methods’ intra-procedural control flow. It con-
siders three of the most popular database access technologies used in Java systems,
according to Goeminne et al. [43], namely JDBC, Hibernate, and JPA.

An overview of Meurice et al.’s approach can be seen in Figure 11.1. First, it
takes the application source code and database schema as input. It parses the schema
and analyzes the source code to identify the locations where the application interacts
with the database. Then, it extracts the SQL queries sent to the database at these
locations and parses the queries. The final output is a set of database access locations,
their queries, and the database objects (tables and columns) impacted/accessed at
these locations.

Database
Database 
schema

Java
source code

ORM DB access 
detection

JDBC analysis

Hibernate analysis

JPA analysis

Database 
accesses

Java system

Static analyzer

JDBC

JDBC

Fig. 11.1: Overview of the query extraction approach

Different technologies (i.e., JDBC, Hibernate, or JPA) require different analysis
approaches, like SQL dialects requiring specific parsers. A static approach would
require inter-procedural data- and control-flow analyses, as SQL queries can be
constructed through deeply embedded string operations.

In some cases, even such techniques cannot extract the entire query. Thus, a query
might be incomplete. For example, a user may enter credentials in a login form to be
validated in the database. The user input is known at run-time, but the static analyzer
only sees that the email and password variables are used to construct the query.
The parser must tolerate such incomplete statements, and in the end, the extraction
process balances precision and the computation overhead of in-depth static analyses.
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Meurice et al. evaluated their approach on three open-source systems (OSCAR,2
OpenMRS,3 and Broadleaf4) with sizes ranging from 250 kLOC to 2,054 kLOC
having 88–480 tables in their databases. The first two are popular electronic medical
record (EMR) systems, and the third is an e-commerce framework. They could
extract queries for 71.5–99% of database accesses with 87.9–100% of valid queries.

In their follow-up work [73], they analyzed the evolution of the same three systems
as they have been developed for more than seven years. They jointly analyzed the
changes in the database schema and the related changes in the source code by focusing
on the database access locations.

They made several interesting observations. For example, different data manip-
ulation technologies could access the same tables within the programs. Database
schemas also expanded significantly over time. Most schema changes consisted in
adding new tables and columns. A significant subset of database tables and columns
were not accessed (any longer) by the application programs, resulting in “dead”
schema elements.

Co-evolving schema and programs is not always a trivial process for developers.
Developers seem to refrain from evolving a table in the database schema since this
may make related queries invalid in the programs. Instead, they probably prefer to
add a new table by duplicating its data and incrementally updating the programs to
use the new table instead of the old one. Sometimes the old table version is never
deleted, even when not accessed anymore.

11.2.3 Static Analysis of NoSQL Database Accesses

NoSQL (“Not Only SQL”) technologies emerged to tackle the limitations of relational
databases. They offer attractive features such as scale-out scalability, cloud readiness,
and schema-less data models [69]. New features come at a price, however. For
example, schema-less storage allows faster data structure changes, but the absence
of explicit schema results in multiple co-existing implicit schemas. The increased
complexity complicates developers’ operational and maintenance burden [92, 5].

Efforts have been made to address the challenges of NoSQL systems. A popular
one is to support schema evolution in the schema-less NoSQL environment [106]. For
example, researchers study automatic schema extraction [1], schema generation [45],
optimization [77], and schema suggestions [49]. Behind the scenes, such approaches
mainly rely on a static analysis of the source code or the data, operating on the part
of the source code implementing the database communication.

Cherry et al. addressed the problem of retrieving database accesses from the
source code of JavaScript applications that use MongoDB [26].

2 https://www.oscar-emr.com
3 https://www.openmrs.org
4 https://www.broadleafcommerce.org
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Static analysis of JavaScript is known to be extremely difficult. Existing tech-
niques [54, 10] usually struggle to handle the excessively dynamic features of the
language [107], and approaches with type inference [51], data flow [63], or call
graphs [37] need to balance between scalability and soundness. Cherry et al. allevi-
ate the limitations of the static analysis by using heuristics.

Listing 11.3 presents a typical schema definition in Mongoose,5 a popular object-
modeling library to facilitate working with MongoDB in JavaScript. First, the
mongoosemodule is included using the built-in require function. Then a schema is
created through the mongoose.Schema(...) API call. In Mongoose, a Schema is
mapped to a MongoDB collection and defines the structure of the documents within
that collection. To work with a Schema, a Model is needed in Mongoose. Finally,
line 9 creates a Model which is exported to be used externally.

Listing 11.3: Mongoose schema definition example
1 const mongoose = require("mongoose");
2

3 let CarSchema = new mongoose.Schema({
4 brand: String,
5 model: String,
6 price: Number
7 });
8

9 module.exports = mongoose.model("cars", CarSchema);

Listing 11.4 shows an example usage of the model in Listing 11.3. The model is
imported using the require function (line 1). An instance of a model is a Document
in Mongoose that can be created and saved in various ways. The example uses the
Document.save() method of the tesla instance (line 5). Finally, line 8 shows a
simple query to find documents.

Listing 11.4: Mongoose query example
1 Car = require("./cars.js");
2

3 // ...
4 tesla = new Car("Tesla", "Model S", 95000);
5 await tesla.save();
6

7 // ...
8 tesla = await Car.find({name: /Tesla/});

Cherry et al. look for similar MongoDB interactions in JavaScript applications.
They aim is to identify every statement operating with the database. For this purpose,
they gathered method signatures from reference guides of MongoDB Node Driver
3.6 and Mongoose 5.12.8. They selected the methods that access the database for one
of the following operations: (1) creating a new collection/document; (2) updating the
content of documents or a collection; (3) deleting documents from a collection; (4)
5 https://mongoosejs.com/
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accessing the content of documents. Overall, they identified 179 methods, 74 from
MongoDB Node Driver and 105 from Mongoose.

CodeQL Analysis
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Method 

Extraction

Filtering 
Heuristics
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Locations

JavaScript
Project
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Fig. 11.2: Overview of the MongoDB data access analysis by Cherry et al. [26]

Figure 11.2 presents an overview of the main steps of the approach. First, it
analyzes a JavaScript project with CodeQL,6 a code analysis engine developed
by GitHub. Code can be queried in CodeQL as if it were data in an SQL-like
query language. Accordingly, the approach then runs queries to find the database
access methods. The next step applies filtering heuristics to improve the precision by
eliminating method calls in potential conflict with other APIs. They defined seven
heuristics. For example, the “the receiver should not be ‘ ’” heuristic avoids potential
collisions with the frequently used Lodash7 library. The outcome is a list of source
code locations accessing the database with details of the access (e.g., API used,
receiver, context).

An example use case of the approach is the analysis of the evolution of systems
database usage. Cherry et al. presented two case studies on Bitcore8 and Overleaf.9

Figure 11.3 shows the database access methods in the different releases of Bitcore,
a project with 4.2K stars and 2K forks on GitHub.

It has a multi-project infrastructure with a MongoDB database in its core. The
most represented database operation is select with 170 distinct method calls. One
can also see a major change in the number of database accesses around v8.16.2. A
closer look reveals that a commit10 adds numerous models and methods interacting

6 https://codeql.github.com/
7 https://lodash.com/
8 https://github.com/bitpay/bitcore
9 https://github.com/overleaf/web
10 https://github.com/bitpay/bitcore/commit/d08ea9
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Fig. 11.3: Evolution of Bitcore

with it. It is a new feature: “[Bitcore] can now sync ETH and get wallet history for
ERC20 tokens”—says the commit message.

Figure 11.4 shows the evolution of Overleaf, a popular online, collaborative
LaTeX editor. Overleaf’s database usage differs from Bitcore with more prominent
data modifications. Indeed, there are more updates (34%, 108) than selects (32%,
103). There was also an abrupt change in database accesses between September and
October 2020. Overleaf was migrated from MongoJS to MongoDB Node Driver.

Cherry et al. evaluated the accuracy of their approach on a manually validated
oracle of 307 open-source projects. They reached promising results, achieving a
precision of 78%. Such an approach is the first step toward additional database
access API usage analyses in JavaScript applications. It is required, for example,
to analyze the evolution of systems [72], help their developers propagate schema
changes [2], or identify antipatterns [82].

11.2.4 Reflections

We presented two static analysis approaches to study how applications communicate
with their databases. We first discussed communication with relational databases.
The programming context here was Java, a statically typed language. Then we
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Fig. 11.4: Evolution of Overleaf

learned a technique for MongoDB as an example of a popular NoSQL database in
the dynamically typed language context of JavaScript applications.

To extract SQL queries, pioneer work was published by Christensen et al. [27].
They propose a static string analysis technique that translates a given Java program
into a flow graph and then generates a finite-state automaton. Gould et al. propose
a method based on an interprocedural data-flow analysis [47, 116]. Maule et al.
use a similar k-CFA algorithm and a software dependence graph to identify the im-
pact of relational database schema changes upon object-oriented applications [68].
Brink et al. present a quality assessment approach for SQL statements embedded
in PL/SQL, COBOL, and Visual Basic code [23]. They extract the SQL statements
from the source code using control and data-flow analysis techniques. Annamaa et al.
presented Alvor, a tool that statically analyzes SQL queries embedded into Java
programs. Their approach is based on an interprocedural path-insensitive constant
propagation analysis [11] similar to the one presented by Meurice et al. [75]. Ngo
and Tan use symbolic execution to extract database interaction points from web
applications [83]. They work with PHP applications of sizes ranging from 2–584
kLOC. Their method can extract about 80% of database interactions. PHP appli-
cations were also studied by Anderson et al., who proposed program analysis for
extracting models of database queries [8, 9, 7]. They implement their approach in
Rascal as part of the PHP AiR framework. A similar approach was also presented
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by Manousis et al. [64]. They describe a language-independent abstraction of the
problem and demonstrate it with a tool implementation for C++ and PHP.

Recent research also targeted Android, where SQL is preferred instead of higher-
level abstractions (e.g., an ORM) that may affect performance. Lyu et al. studied
local database usage in Android applications [62]. They look for invocations of
SQLite APIs and their queries. Li et al. presented a general string analysis approach
for Android [60]. They define an intermediate representation (IR) of the string
operations performed on string variables. This representation captures data-flow
dependencies in loops and context-sensitive call site information.

There are also dynamic approaches. Cleve et al. explored aspect-based tracing
and SQL trace analysis for extracting implicit information about program behavior
and database structure [30]. Noughi et al. mined SQL execution traces for data
manipulation behavior recovery and conceptual interpretation [78, 84]. Oh et al.
proposed a technique to extract dependencies between web components (i.e., Java
Server Pages) and database resources. Using the proxy pattern, they dynamically
observe the database-related objects in the Java standard library.

Some recent approaches also targeted NoSQL databases, e.g., to extract models
from the JSON document database [20, 39, 15, 1]. Some approaches also deal
with schema generation [45], optimization [77], and schema suggestions [49]. Also
interesting to note is the work of Störl et al., who studied schema evolution and data
migration in a NoSQL environment [106]. As a similar approach to Cherry et al. [26],
Meurice et al. implemented an approach to extract the database schema of MongoDB
applications written in Java [72]. They applied their method to analyze the evolution
of Java systems.

11.3 Analysis Techniques

11.3.1 Introduction

Once we mined information on the storage and management of data in the ecosystem,
we can analyze it for various purposes.

In this section, we present two techniques. First, we show static analysis ap-
proaches in Subsection 11.3.2, which rely on the mining techniques introduced in
the previous section. Then we present visualization methods in Subsection 11.3.3
to analyze the dependencies between the database and different components of an
ecosystem.

11.3.2 Static Analysis Techniques

A database is a critical component of a data-intensive ecosystem. It has to be readily
available, and its response time influences the usability of the entire ecosystem. It
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has been shown that the structure of a database can evolve rapidly, reaching hundreds
of tables or thousands of database objects [75]. Moreover, because the application
code and the database depend on each other, they evolve in parallel [73], resulting in
increased complexity of the database communication code. This layer must remain
reliable, robust, and efficient. Here, we show example approaches to help maintain
database interactions between systems of an ecosystem and their databases.

11.3.2.1 Example 1: SQLI������—A Static Analyzer

Static analyzers11 can help detect fault-prone and inefficient database usage, i.e.,
code smells, in early development phases. A lightweight analyzer can pinpoint a
mistake already in the IDE before the developer commits it.

Nagy et al. presented SQLI������,12 a tool to identify code smells in SQL queries
embedded in Java code [81, 82]. SQLI������ implements a combined static analysis
of the SQL statements in the source code, the database schema, and the data in
the database. Its static analysis relies on the approach of Meurice et al. presented
in Section 11.2. It uses a path-sensitive string analysis algorithm to extract SQL
queries from the Java code and implements smell detectors on the abstract semantic
graph of a fault-tolerant SQL parser. The supported SQL smells are based on the SQL
Antipatterns book of Karwin [53]. SQLI������ can also perform additional analyses:
(1) It supports inspecting the interprocedural slice of the statements involved in the
query construction; (2) It can perform a table/column access analysis to determine
which Java methods access specific tables or columns; (3) It calculates embedded
SQL metrics (e.g., number of joins, nested select statements) to identify problematic
or poorly designed classes and SQL statements. The tool is also available as an
Eclipse plug-in. A screenshot of a query slice in the Eclipse plug-in can be seen in
Figure 11.5.

SQLI������ has been used in various studies. Muse et al. relied on it to study SQL
code smells [80], and the prevalence, composition, and evolution of self-admitted
technical debt in data-intensive systems [79]. Gobert et al. employed SQLI������
to study developers’ testing practices of database access code [40, 41]. Ardigò et al.
also relied on it to visualize database accesses of a system [12, 13].

11.3.2.2 Example 2: Preventing Program Inconsistencies

Any software system is subject to frequent changes [58], which often hit the database
schema [96, 31, 112]. When the schema evolves, developers need to adapt the
applications where it accesses the changed schema elements [68, 25, 88]. This

11 The term “static analysis” is conflated. In this section, we call “static analyzer” a tool implementing
source code analysis algorithms and techniques to find bugs automatically. The more general term
“static analysis” (or static program analysis) is the analysis of a program performed without executing
it.
12 https://bitbucket.org/csnagy/sqlinspect/
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Fig. 11.5: A query slice in the Eclipse plug-in of SQLI������

adaptation process is usually achieved manually. Thus, it can be error-prone resulting
in database or application decay [102, 103].

Meurice et al. proposed an approach to detect and prevent program inconsistencies
under database schema changes [74]. Their what-if analysis simulates future database
schema modifications to estimate how they affect the application code. It recommends
to developers where and how they should propagate the schema changes to the source
code. The goal is to ensure that the programs’ consistency is preserved.

The core idea of the approach is first to analyze the evolution of the system,
focusing on its schema changes. They collect metrics to estimate the effort required
in the past for adapting the applications to database schema changes. For example,
they look for renamed or deleted tables and columns and estimate from the commits
the time needed to solve them in the code. To analyze the codebase and the schema,
they rely on the previous analysis approach we presented in Section 11.2. They run
the analysis on each earlier system version and build a historical dataset. This dataset
is designed to replay database schema modifications and estimate their impact on
the source code. It describes all versions of the columns of database tables and links
them to source code entities where they are accessed in the application code.

Meurice et al. demonstrated their what-if analysis on the three open-source Java
systems (OpenMRS, Broadleaf Commerce, and OSCAR) used for the query extrac-
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tion approach in Subsection 11.2.2. Recall that OpenMRS and OSCAR are electronic
medical record systems, and Broadleaf is an e-commerce framework. The largest one,
OSCAR, has 2,054 kLOC and 480 tables.

They collected 323 database schema changes and randomly selected 130 for
manual evaluation. They compared the tool’s recommendations to the developers’
actual modifications. The approach made 204 suggestions for the 130 cases: 99%
were correct, and only 1% were wrong. The tool missed recommendations for 5%
(6/130) of the changes. The results show impressive potential in detecting and
preventing program inconsistencies.

11.3.3 Visualization

11.3.3.1 Introduction

Software visualization is “the use of [. . . ] computer graphics technology to facili-
tate both the human understanding and effective use of computer software” [100].
It is a specialization of information visualization [24]. In the 18th century, starting
with Playfair, the classical methods of plotting data were developed. In 1967 Bertin
published “Semiology of Graphics” [18], where he identified the basic elements of
diagrams. Later, Tufte published a theory of data graphics that emphasized maximiz-
ing the density of useful information [108, 109, 110]. Bertin’s and Tufte’s theories
led to the development of the information visualization field, which mainly addresses
the issues of how certain types of data should be depicted. The goal of information
visualization is to visualize any kind of data. According to Ware [115], visualization
is the preferred way of getting acquainted with large data.

Software visualization deals with software in terms of run-time behavior (dynamic
visualization) and structure (static visualization). It has been widely used by the
reverse engineering and program comprehension research community [104, 66,
19, 36, 105] to uncover and navigate information about software systems. In the
more specific field of software evolution, mining software repositories, and software
ecosystems, visualization has also proven to be a key technique due to the sheer
amount of information that needs to be processed and understood.

Here we show two foundational approaches in the scientific literature to visualize
applications, databases, and their interactions.

11.3.3.2 Example 1: DAHLIA

Data access APIs enable applications to interact with databases. For example, JDBC
provides Java APIs for accessing relational databases from Java programs. It allows
applications to execute SQL statements and interact with a SQL-compliant database.
JDBC is considered a lower-level API with its advantages and disadvantages. For
example, clean and simple SQL processing or good performance vs. complexity
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and DBMS-specific queries. Higher-level APIs such as Hibernate ORM (Object-
Relational Mapping) try to tackle the object-relational impedance mismatch [50]. In
return, such mechanisms partially or wholly hide the database interactions and the
executed SQL queries. In this context, manually recovering links between the source
code and the databases may prove complicated, hindering program comprehension,
debugging, and maintenance tasks.

Meurice et al. developed DAHLIA to help developers with a software visual-
ization approach [70, 71]. It allows developers to analyze database usage in highly
dynamic and heterogeneous systems. The goal is to support software comprehen-
sion and database program co-evolution. DAHLIA extracts and visualizes database
interactions in the source code to derive useful information about database usage. It
relies on the data-access extraction described in Section 11.3 [75] and analyzes the
evolution of the system by mining its development history [74].

DAHLIA has multiple views. It can visualize the database as a city using the 3D
city metaphor [118]. This view represents a database table as a 3D building with
its height, width, and color calculated from database usage metrics. For example,
metrics for the building height/width can be the number of files or the number of
code locations accessing the given table. Metrics for the building color can be the
database access technology distribution. An example of this view can be seen in
Figure 11.6.

Another view shows the code city view, which, compared to the traditional code
city [119], maps database metrics to the buildings. For example, the user may ask
to calculate the buildings’ height/width from the number of accessed tables by the
given file or the number of database access locations in the given file. For the color,
the user may use metrics such as the access technology distribution (i.e., different
colors for database access technologies).

Visualizing links between the database and code cities is also possible by showing
the two cities side-by-side in one view. When the user selects a table, DAHLIA
highlights all the files accessing it.

This view can be seen in Figure 11.7 for OpenMRS, a medical record system that
we also analyzed in Subsection 11.2.2. The green tables are accessed with Hibernate
mapping in the figure, and the black tables are without ORM mappings. A table’s
height represents its number of columns, and its width is the number of SQL queries
accessing it. The green files use Hibernate, the blue files use JDBC, and the black
ones do not access the database. A file’s height represents the number of accessed
tables, and its width represents the number of locations accessing the database.
The user selected a Java file highlighted in the right code city with cyan. DAHLIA
highlighted all its tables in the left database city with cyan color.

Overall, DAHLIA is a visualization tool to analyze the database usage of dy-
namic and heterogeneous systems by showing the links between the source code and
the database. It was designed to deal with systems using multiple database access
technologies, aiming to support database program co-evolution.
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packages

tables

Fig. 11.6: A 3D database city in DAHLIA

Fig. 11.7: Database (left) and Code (right) cities side-by-side in DAHLIA

11.3.3.3 Example 2: �3���C���

As we could see in the previous example, the city metaphor for visualizing software
systems in 3D has been widely explored and has led to various implementations and
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approaches. Now we look at �3���C���,13 a code city visualization focusing on data
interactions [12, 13].

Data is usually managed using databases, but it is often simply stored in files of
various formats, such as CSV, XML, and JSON. Data files are part of a project’s file
system and can thus be easily retrieved. However, a database is usually not contained
in the file system, and its presence can only be inferred from the source code, which
implements the database accesses.

�3���C��� represents data files in the city and maps simple metrics on their
meshes (i.e., their shapes rendered in the visualization). It adds the database to
the visualization using the free space of the sky above or the underground below
the city. �3���C��� infers the database schema using SQLI������ [82]. It also
collects metrics of the database entities, such as the number of columns of tables
or the number of classes accessing them. The city layout uses a history-resistant
arrangement proposed by Pfahler et al. [87], i.e., new entities remain at their reserved
place throughout the evolution. The resulting view seamlessly integrates data sources
into a software city and enables a comprehensive understanding of a system’s source
code and data.

Database with Table-Cylinders 

DataFile-Cylinders

Code-Buildings

Binary-Hemispheres

Fig. 11.8: The main page of �3���C���

Figure 11.8 shows a screenshot of MoneyWallet14 visualized in �3���C���. It is
an expense manager Android app with an SQLite database. The software city is in
the center, with the database cloud above the city. Information panels present the
repository name (top left), the system metrics (top right), the actual commit (bottom
left), and its commit message (bottom right). The timeline at the bottom depicts the

13 �3���C��� is a web application available online at https://metricity.si.usi.ch/v2.
14 https://github.com/AndreAle94/moneywallet
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evolution of the project, where one can spot significant changes in the metrics. The
evolution can be controlled with the buttons below the city.

r3 (f038042) - 4 May 2020 r373 (6675702) - 30 Jul 2020 r725 (9c5f1c1) - 27 Apr 2021

1
3

4

2

Fig. 11.9: The evolution of the SwissCovid Android App in �3���C���

Figure 11.9 presents the evolution of the official SwissCovid Android App15 and
highlights three revisions. The timeline at the bottom shows regular contributions
to data files (blue bubbles in the middle). Indeed, the XML files grow from an
initial 10k to 25k lines. Interesting districts can be spotted in the evolution. The
Java classes are primarily located on the bottom-left side of the city 1�. The robust
SecureStorage.java class 2� stands out. This is the encrypted implementation of
android.content.SharedPreferences,16 the primary storage implementation
with a critical role in the contact tracing app of Switzerland. We can see the neigh-
borhoods of resource files 3� with tiny PNG and SVG files and folders of smaller
layout XMLs. Another noticeable district is a folder with strings.xml files of
various languages 4�. The initial version supported three official Swiss languages
(Italian, French, and German). As the app evolves, the XMLs grow, and the number
of languages increases to twelve.

Overall, �3���C��� is an example of adding “data” as first-class citizens to a
widely used software visualization approach, the city metaphor.

11.3.4 Reflections

In this section, we learned a static analysis approach to identify SQL code smells
in the database communication layer of data-intensive applications. We could also
see a what-if analysis technique to detect and prevent program inconsistencies under
database schema changes. Then we discussed two visualization methods to analyze
dependencies between the database and different components of an ecosystem.

15 https://github.com/SwissCovid/swisscovid-app-android
16 https://developer.android.com/reference/android/content/
SharedPreferences
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Static Analysis. Common mistakes in SQL have been in the interest of many
researchers. Brass et al. worked on automatically detecting logical errors in SQL
queries [21] and then extended their work by recognizing common semantic mis-
takes [22]. Their SQLLint tool automatically identifies such errors in (syntactically
correct) SQL statements [44]. There are also books in this area, e.g., The Art of
SQL [35], Refactoring SQL Applications [34], and SQL Antipatterns [53].

In the realm of embedded SQL, Christensen et al. proposed a tool (JSA, Java
String Analyzer) to extract string expressions from Java code statically [27]. They
also check the syntax of the extracted SQL strings. Wassermann et al. proposed a
static string analysis technique to identify possible errors in dynamically generated
SQL code [116]. They detect type errors (e.g., concatenating a character to an integer
value) in extracted query strings of valid SQL syntax. In a tool demo paper, they
present their prototype tool called JDBC Checker [46]. Anderson and Hills studied
query construction patterns in PHP [7]. They analyzed query strings embedded in
PHP code with the help of the PHP AiR framework.

Brink et al. proposed a quality assessment of embedded SQL [23]. They analyze
query strings embedded in PL/SQL, Cobol, and Visual Basic programs [111]. Many
static techniques deal with embedded queries for SQL injection detection [98].
Their goal is to determine whether a query could be affected by user input. Yeole
and Meshram published a survey of these techniques [120]. Marashdeh et al. also
surveyed the challenges of detecting SQL Injection vulnerabilities [65].

Some papers also tackle SQL fault localization techniques. Clark et al. proposed
a dynamic approach to localize SQL faults in database applications [28]. They
provide command-SQL tuples to show the SQL statements executed at database
interaction points. Delplanque et al. assessed schema quality and detected design
smells [32]. Their tool, DBCritics, analyzes PostgreSQL schema dumps and identi-
fies design smells such as missing primary keys or foreign key references. Alvor by
Annamaa et al. can analyze string expressions in Java code [11]. It checks syntax cor-
rectness, semantics correctness, and object availability by comparing the extracted
queries against its internal SQL grammar and by checking SQL statements against
an actual database.

Visualization. Since the seminal works of Reiss [90] and Young & Munro [121],
many have studied 3D approaches to visualize software systems. The software as
cities metaphor has been widely explored and led to diverse implementations, such
as the Software World approach by Knight et al. [56], the visualization of communi-
cating architectures by Panas et al. [85, 86], Verso by Langelier et al. [57], CodeCity
by Wettel et al. [118, 119], EVO-STREETS by Steinbrückner & Lewerentz [101],
CodeMetropolis by Balogh & Beszedes [16], and VR City by Vincur et al. [114].

Some approaches considered presenting the databases together with the source
code, and interestingly, most use the city metaphor, such as DAHLIA [70, 71]
and �3���C��� [12, 13]. Zirkelbach and Hasselbring presented RACCOON [122], a
visualization approach of database behavior, which uses the 3D city metaphor to show
the structure of a database based on the concepts of entity-relationship diagrams.
Marinescu presented for enterprise systems a meta-model containing object-oriented
entities, relational entities, and object-relational interactions [67].
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11.4 Empirical Studies

11.4.1 Introduction

In this section, we discuss recent empirical studies relying on large collections of
data-intensive software systems. The discussed studies cover three main aspects (1)
the (joint) use of database models and access technologies (Subsection 11.4.2); (2) the
quality of the database manipulation code (Subsection 11.4.3 and Subsection 11.4.4);
(3) the way this part of the code is tested (Subsection 11.4.5).

11.4.2 The (Joint) Use of Data Models and Technologies

In the last decade, non-relational database technologies (e.g., graph databases, doc-
ument stores, key-value, column-oriented) have emerged for specialized purposes.
The joint use of database models (i.e., using different database models for various
purposes in the same system, such as a key-value store for caching and a relational
database for persistence) has increased in popularity since there are benefits of
such multi-database architectures where developers combine various technologies.
However, the side effects on design, querying, and maintenance are not well-known.

Benats et al. [17] conducted an empirical study of (multi-)database models in
open-source database-dependent projects. They mined four years of development his-
tory (2017–2020) of 33 million projects by leveraging Libraries.io.17 They identified
projects relying on one or several databases and written in popular programming lan-
guages (1.3 million projects). After applying filters to eliminate “low-quality” reposi-
tories and remove project duplicates, they gathered a dataset of 40,609 projects. They
analyzed the dependencies of those projects to assess (1) the popularity of different
database models, (2) the extent that they are combined within the same systems,
and (3) how their usage evolved. They found that most current database-dependent
projects (54.72%) rely on a relational database model, while NoSQL-dependent sys-
tems represent 45.28% of the projects. However, the popularity of SQL technologies
has recently decreased compared to NoSQL datastores.

Regarding programming languages, the authors noticed that Ruby and Python
systems are often paired with a PostgreSQL database. At the same time, Java and C#
projects typically rely on a MySQL database. Data-intensive systems in JavaScrip-
t/TypeScript are essentially paired with document-oriented or key-value databases

The study results confirm the emergence of hybrid data-intensive systems. The
authors found the joint use of different database models (e.g., relational and non-
relational) in 16% of all database-dependent projects. In particular, they found that
more than 56% of systems relying on a key-value database also use another tech-
nology, typically relational or document-oriented. Wide-column dependent systems

17 https://libraries.io/
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Fig. 11.10: Usage of database management systems (2020)

follow the same pattern, with over 47% being hybrid. This shows the complimentary
usage of SQL and NoSQL in practice.

Fig. 11.11: Distribution of hybrid database-dependent projects
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The authors then examined the evolution of these systems to identify typical
transitions in terms of database models or technologies. They observed that only
one percent of the database-dependent projects evolved their data model over time.
The majority (62%) were not initially hybrid but once relied on a single database
model. In contrast, 19% of those projects became “mono-database” after initially
using multiple database models.

11.4.3 Prevalence, Impact and Evolution of SQL Bad Smells

Muse et al. [80] investigated the prevalence and evolution of SQL code smells in data-
intensive open-source systems. Their study relies on the analysis of 150 open-source
software systems that manipulate their databases through popular database access
APIs (Android Database API, JDBC, JPA and Hibernate). The authors analysed the
source code of each project and studied 19 traditional code smells using the DECOR
tool [48] and 4 SQL code smells using SQLInspect [82]. They also collected bug-
fixing and bug-inducing commits from each project using PyDriller [99].

They first studied the prevalence of SQL code smells in the selected software
systems by categorizing them into four application domains: Business, Library,
Multimedia, and Utility. They found that SQL code smells are prevalent in all four
domains, some SQL code smells being more prevalent than others. Then, they
investigated the co-occurrence of SQL code smells and traditional code smells
using association rule mining. The results show that while some SQL code smells
have statistically significant co-occurrence with traditional code smells, the degree
of association is low. Third, they investigated the potential impact of SQL code
smells on software bugs by analysing their co-occurrences within the bug-inducing
commits. They performed Cramer’s V test of association and built a random forest
model to study the impact of the smells on bugs. The analysis results indicate a weak
association between SQL code smells and software bugs. Some SQL code smells
show a higher association with bugs than others. Finally, the authors performed a
survival analysis of SQL and traditional code smells using Kaplan-Meier survival
curves to compare their survival time. They found that SQL code smells survive
longer than traditional code smells. A large fraction of the source files affected by
SQL code smells (80.5%) persist throughout the whole snapshots, and they hardly
get any attention from the developers during refactoring. Furthermore, significant
portions of the SQL code smells are created at the very beginning and persist in all
subsequent versions of the systems.

The study shows that SQL code smells persist in the studied data-intensive soft-
ware systems. Developers should be aware of these smells and consider detecting
and refactoring SQL and traditional code smells separately, using dedicated tools.
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11.4.4 Self-admitted Technical Debt in Database Access Code

Developers sometimes choose design and implementation shortcuts due to the pres-
sure from tight release schedules. However, shortcuts introduce technical debt that
increases as the software evolves. The debt needs to be repaid as quickly as possible
to minimize its impact on software development and quality. Sometimes, technical
debt is admitted by developers in comments and commit messages. Such debt is
known as self-admitted technical debt (SATD).

In data-intensive systems, where data manipulation is a critical functionality, the
presence of SATD in the data access logic could seriously harm performance and
maintainability. Understanding the composition and distribution of the SATDs across
software systems and their evolution could provide insights into managing technical
debt efficiently.

Muse et al. [79] conducted a large-scale empirical study on the composition and
distribution of SATD across data-intensive software systems and their evolution,
providing insights into the prevalence, composition, and evolution of SATD. The
authors analysed 83 open-source systems relying on relational databases and 19
systems relying on NoSQL databases. They detected SATD in source code comments
obtained from different snapshots of the subject systems, and conducted a survival
analysis to understand the evolutionary dynamics of SATDs.

They analysed 361 sample data-access SATDs manually, investigating the compo-
sition of data-access SATDs and the reasons behind their introduction and removal.
They identified 15 new SATD categories, out of which 11 are specific to database
access operations. They found that most of the data-access SATDs are introduced
in the later stages of change history rather than at the beginning. They also discov-
ered that bug fixing and refactoring are the main reasons behind the introduction of
data-access SATDs.

11.4.5 Database Code Testing (Best) Practices

Software testing allows developers to maintain the quality of a software system
over time. The database access code fragments are often neglected in this context,
although they require specific attention.

Gobert et al. [40] empirically analysed the challenges and perils of database access
code testing. They first mined open-source systems from Libraries.io to find projects
relying on database manipulation technologies. They analysed 6,622 projects and
found automated tests and database manipulation code in only 332 projects. They
further examined the 72 projects for which the tests could be executed and analyzed
the corresponding coverage reports.

Figure 11.12 shows a scatter plot of the analysed projects and their respective test
coverage rates. The results show that the database manipulation code was poorly
tested: 33% of the projects did not test DB communication, and 46% did not test
half of their DB methods. A high number of projects with the highest coverage
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Fig. 11.12: Test coverage rates of Non-DB access methods vs. DB access methods

rate reached, in fact, full coverage. The authors found a mean value of 2.8 database
methods for projects with full coverage. Slightly fewer projects in the figure (48.6%)
had lower coverage for database methods. However, considering only the projects
with at least five database methods (the median value), there is a more significant
difference: 59% have a smaller coverage for database methods than for regular
methods. Similarly, while 46% of the projects cover less than half of their database
methods, this number increases to 53% for projects above the median.

This poor test coverage motivated the authors to understand why developers were
holding back from testing DB manipulation code. They conducted a qualitative
analysis of 532 questions from popular Stack Exchange websites. They identified the
problems that hampered developers in writing tests. Then they built a taxonomy of
issues with 83 different problems classified into 7 main categories. They found out
that developers mostly look for insights on general best practices to test database
manipulation code. They also ask more technical questions related to DB handling,
mocking, parallelisation or framework/tool usage.

In a follow-up study, the same authors analysed the answers to these questions [41].
They manually labelled the top three highest-ranked answers to each question and
built a taxonomy of best practices. Overall, they examined 598 answers to 255
questions, leading to 363 different practices in the taxonomy.

The category in the taxonomy with the highest number of tags and questions
relates to the testing environment, e.g., proposed various tools and configurations.
The second most important category is database management, e.g., initialising or
cleaning up a database between tests. Other categories include code structure or
design guidelines, concepts, performance, processes, test characteristics, test code,
and mocking.

Most suggestions consider the testing environment and recommend various tools
or configurations. The second largest category is database management, mainly ad-
dressing database initialisation and clean-up between tests. Other categories pertain
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to code structure or design, concepts, performance, processes, test characteristics,
test code, and mocking.

11.4.6 Reflections

Studies on code quality. Other researchers studied frequent errors and antipatterns
in SQL queries. The book of Karwin [53] is the first to present SQL antipatterns in
a comprehensive catalogue. Khumnin et al. [55] present a tool for detecting logical
database design antipatterns in Transact-SQL queries.

Another tool, DbDeo [95], implements the detection of database schema smells.
DbDeo has been evaluated on 2,925 open-source repositories; their authors identified
13 different types of smells, among which “index abuse” was the most prevalent.
De Almeida Filho et al. [6] investigate the prevalence and co-occurrence of SQL
code smells in PL/SQL projects. Arzamasova et al. propose to detect antipatterns in
SQL logs [14] and demonstrate their approach by refactoring a project containing
more than 40 million queries. Shao et al. [94] identified a list of database-access
performance antipatterns, mainly in PHP web applications. Integrity violation was
addressed by Li et al. [59], who identified constraints from source code and related
them to database attributes.

Studies on evolution. Several researchers studied how data-intensive systems
relying on a relational database evolve. Curino et al. [31] analyse the evolution
history of the Wikipedia database schema, to extract both a micro-classification
and a macro-classification of schema changes. An evolution period of four years
was considered, corresponding to 171 successive schema versions. In addition to
a schema evolution statistics extractor, the authors propose a tool operating on the
differences between subsequent schema versions to semi-automatically extract the
schema changes that have possibly been applied. The results motivate the need
for automated schema evolution support. Vassiliadis et al. [112, 113] study the
evolution of individual database tables over time in eight different software systems.
They observe that evolution-related properties, such as the possibility of deletion,
or the updates a table undergoes, are related to observable table properties, such as
the number of attributes or the time of birth of a table. Through a large-scale study
on the evolution of databases, they also show that the essence of Lehman’s laws of
software evolution remains valid in the context of database schema evolution [97], but
that specific mechanics significantly differ from source code evolution. Dimolikas
et al. [33] analyse the evolution history of six database schemas, and reveal that the
update behavior of tables depend on their topological complexity. Cleve et al. [29]
show that mining database schema evolution can have a significant informative value
in reverse engineering. They introduce the concept of global historical schema,
an aggregated schema of all successive schema versions. They then analyse this
global schema to better understand the current version of the database structure,
intending to facilitate its evolution. Lin et al. [61] study the collateral evolution of
applications and databases, in which the evolution of an application is separated
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from the evolution of its persistent data, or the database. They investigated how
application programs and database management systems in popular open-source
systems (Mozilla, Monotone) cope with database schema and format changes. They
observed that collateral evolution could lead to potential problems. The number
of schema changes reported is minimal. In Mozilla, 20 table creations and 4 table
deletions are reported in 4 years. During 6 years of Monotone schema evolution,
only 9 tables were added, while 8 were deleted.

Qiu et al. [88] present a large-scale empirical study on ten popular database
applications from various domains to analyze how schemas and application code co-
evolve. They studiy the evolution histories of the repositories to understand whether
database schemas evolve frequently and significantly, and how schemas evolve and
impact the application code. Their analysis estimates the impact of a database schema
change in the code. They use a simple difference calculation of the source lines
changed between two versions for this estimation. Goeminne et al. [42] study the
co-evolution between code-related and database-related activities in data-intensive
systems combining several ways to access the database (native SQL queries and
Object-Relational Mapping). They empirically analyse the evolution of SQL, Hiber-
nate and JPA usage in a large and complex open-source information system. They
observed that using embedded SQL queries was still a common practice.

Other studies exclusively focus on NoSQL applications. Störl et al. [106] in-
vestigated the advantages of using object mapper libraries when accessing NoSQL
data stores. They overview Object-NoSQL Mappers (ONMs) and Object-Relational
Mappers with NoSQL support. As they say, building applications against the native
interfaces of NoSQL data stores creates technical lock-in due to the lack of standard-
ized query languages. Therefore, developers often turn to object mapper libraries as
an extra level of abstraction. Scherzinger et al. [93] studied how software engineers
design and evolve their domain model when building NoSQL applications, by an-
alyzing the denormalized character of ten open-source Java applications relying on
object mappers. They observed the growth in complexity of the NoSQL schemas
and common evolution operations between the projects. The study also shows that
software releases include considerably more schema-relevant changes: >30% com-
pared to 2% with relational databases. Ringlstetter et al. [91] examined how NoSQL
object-mappers evolution annotations were used. They found that only 5.6% of 900
open-source Java projects using Morphia or Objectify used such annotations to
evolve the data model or migrate the data.

Studies on technical debt. Several studies are related to technical debt in data-
intensive systems. Albarak and Bashoon [3] propose a taxonomy of debts related
to the conceptual, logical, and physical design of a database. For example, they
claim that ill-normalized databases (i.e., databases with tables below the fourth
normal form) can also be considered technical debt [4]. To tackle this type of debt,
they propose to prioritize tables that should be normalized. Foidl et al. propose
a conceptual model to outline where technical debt can emerge in data-intensive
systems by separating them into three parts: software systems, data storage systems
and data [38]. They show that those three parts can further affect each other. They
present two smells as illustrations: Missing constraints, when referential integrity
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constraints are not declared in a database schema; and metadata as data, when an
entity-attribute-value pattern is used to store metadata (attributes) as data.

Weber et al. [117] identified relational database schemas as potential sources of
technical debt. They provide a first attempt at utilizing the technical debt analogy for
describing the missing implementation of implicit foreign key (FK) constraints. They
discuss the detection of missing FKs, propose a measurement for the associated TD,
and outline a process for reducing FK-related TD. As an illustrative case study, they
consider OSCAR, which was also used to demonstrate the static analysis approach
in Subsection 11.2.2. Ramasubbu and Kemerer [89] empirically analyse the impact of
technical debt on system reliability by observing a 10-year life cycle of a commercial
enterprise system. They examine the relative effects of modular and architectural
maintenance activities in clients, and conclude that technical debt decreases the
reliability of enterprise systems. They also add that modular maintenance targeted
to reduce technical debt is about 53% more effective than architectural maintenance
in reducing the probability of a system failure due to client errors.

11.5 Conclusion

This chapter summarized the recent research efforts devoted to mining, analyzing
and evolving data-intensive software ecosystems. We have argued that

1. both the databases and the programs are essential ecosystem artifacts;
2. mining, analyzing and visualizing what the programs are doing on the data may

considerably help in understanding the system in general, and the databases in
particular;

3. database interactions may suffer from quality problems and technical debt and
should be better tested;

4. software evolution methods should devote more attention to the program-
database co-evolution problem.

The research community faces many challenges and open questions in the near
future, given the increasing complexity and heterogeneity of data-intensive software
ecosystems. For instance, to fully embrace the DevOps movement, developers need
better support for database-related analyses and evolutions at run-time [52]. This
is the case, in particular, when developing micro-services applications deployed on
distributed computing architectures such as the cloud-edge continuum [76]. Further-
more, machine learning techniques, such as those described in Chapter 10, open the
door to novel recommenders helping developers to design, understand, evolve, test
and improve the performance of modern data-intensive systems.
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